
Customer: DAOhaus
Date: September 01st, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
DAOhaus

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; DAO

Platform EVM

Network Ethereum, BSC

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://daohaus.club/

Timeline 03.08.2022 – 01.09.2022

Changelog 15.08.2022 – Initial Review
01.09.2022 – Second Review

www.hacken.io
2

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 16

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by DAOhaus (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/HausDAO/Baal/tree/milestone/audit-715
Commit:

e704c3cc87684b1d5f2b7ad0e217e6a9dfe2f19c
Technical Documentation:

Whitepaper (partial functional requirements provided)

Technical description

Functional requirements

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/Baal.sol
SHA3: 8dd88c20f18a1c04cc305e1deb1db772f29c906747185c855006a88565e548b2

File: ./contracts/SharesERC20.sol
SHA3: 8dc857c93d5a5d2d0ec700ca5b2c96c8ae53e40c50a631be71b29ba6053a0387

File: ./contracts/LootERC20.sol
SHA3: 054e2a93e64ae43d0d2f6fcc8864f26581ac67f639f2b2a981662e80d3c58596

File: ./contracts/tools/TributeMinion.sol
SHA3: 7e1d74829af4dc6bdf4f2a30549bf74554560121750651b3496a767e6f1979a9

File: ./contracts/tools/Poster.sol
SHA3: 0af8c54e5f3ea31afa2ff3c8de5d448060a1cd2d89ddd2c3e3d7aea7a7db9b69

File: ./contracts/mock/TestAvatar.sol
SHA3: 433708291fa939afb6ef1501f66b940c83b46bed4c4f4e7423e9f5cdc35ff0de

File: ./contracts/mock/TestERC20.sol
SHA3: abd3e3b21b423596f141f4d02159a13a4ffd2a5468380007eea5599fc033b097

File: ./contracts/mock/MockBaal.sol
SHA3: 59666ca0042468722ee8ed910598485917bf74dd3a942fcf5db6c123a56bf3b6

File: ./contracts/fixtures/GnosisImports.sol
SHA3: 43e50a9258d54c7d5c2f024b5a80310c58920ebb7dbe40de358df1c3e4f5a343

File: ./contracts/interfaces/IBaal.sol
SHA3: 9cbd7ed49c8267414ff18ab9da502cd8faa4ced6a45165b380626082093180f3

Second review scope
Repository:

www.hacken.io
4

https://github.com/HausDAO/Baal/tree/milestone/audit-715
https://baal-docs.vercel.app/
https://github.com/user/repo/readme.md
https://github.com/user/repo/docs/really-long-link-should-be-%20manually-divided-by-spaces/in-order-to-look-pretty/

https://github.com/HausDAO/Baal/commit/15bf835955e20c75c47e2d3d89341b
394607d691

Commit:
15bf835955e20c75c47e2d3d89341b394607d691

Technical Documentation:
Whitepaper (partial functional requirements provided)

Technical description

Functional requirements

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/Baal.sol
SHA3: d245813820963bfacabefbc9006a9c169a03e70718b374f68e9ab1224a9cb579

File: ./contracts/SharesERC20.sol
SHA3: 8dc857c93d5a5d2d0ec700ca5b2c96c8ae53e40c50a631be71b29ba6053a0387

File: ./contracts/LootERC20.sol
SHA3: 054e2a93e64ae43d0d2f6fcc8864f26581ac67f639f2b2a981662e80d3c58596

File: ./contracts/tools/TributeMinion.sol
SHA3: 7e1d74829af4dc6bdf4f2a30549bf74554560121750651b3496a767e6f1979a9

File: ./contracts/tools/Poster.sol
SHA3: 0af8c54e5f3ea31afa2ff3c8de5d448060a1cd2d89ddd2c3e3d7aea7a7db9b69

File: ./contracts/mock/TestAvatar.sol
SHA3: 433708291fa939afb6ef1501f66b940c83b46bed4c4f4e7423e9f5cdc35ff0de

File: ./contracts/mock/TestERC20.sol
SHA3: abd3e3b21b423596f141f4d02159a13a4ffd2a5468380007eea5599fc033b097

File: ./contracts/mock/MockBaal.sol
SHA3: 59666ca0042468722ee8ed910598485917bf74dd3a942fcf5db6c123a56bf3b6

File: ./contracts/fixtures/GnosisImports.sol
SHA3: 43e50a9258d54c7d5c2f024b5a80310c58920ebb7dbe40de358df1c3e4f5a343

File: ./contracts/interfaces/IBaal.sol
SHA3: 9cbd7ed49c8267414ff18ab9da502cd8faa4ced6a45165b380626082093180f3

www.hacken.io
5

https://github.com/HausDAO/Baal/commit/15bf835955e20c75c47e2d3d89341b394607d691
https://github.com/HausDAO/Baal/commit/15bf835955e20c75c47e2d3d89341b394607d691
https://baal-docs.vercel.app/
https://github.com/user/repo/readme.md
https://github.com/user/repo/docs/really-long-link-should-be-%20manually-divided-by-spaces/in-order-to-look-pretty/

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 6 out of 10. The Customer provided
superficial functional and technical documentation.

Code quality
The total CodeQuality score is 10 out of 10.

Architecture quality
The architecture quality score is 10 out of 10.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

5 August 2022 7 2 1 0

01 September 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows and
underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent version of
the Solidity compiler. Passed

Floating Pragma SWC-103
Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call should be

checked. Passed

Access Control
& Authorization CWE-284

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be self-destructible

while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation SWC-110 Properly functioning code should never reach

a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should never
be used. Passed

Delegatecall to
Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state unless
it is required.

Passed

Race Conditions SWC-114 Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115

tx.origin should not be used for
authorization. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

Block values as
a proxy for
time

SWC-116
Block numbers should not be used for time
calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a unique
id. A transaction hash should not be used as
a unique id. Chain identifier should always
be used. All parameters from the signature
should be used in signer recovery

Not Relevant

Shadowing State
Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources of
Randomness SWC-120 Random values should never be generated from

Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

EEA-Leve
l-2

SWC-126

All external calls should be performed only
to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused variables
if this is not justified by design. Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be withdrawn

without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data
Consistency Custom Smart contract data should be consistent all

over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Passed

Token Supply
manipulation Custom

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not be
any cases when execution fails due to the
block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should be

followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Environment
Consistency Custom

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit tests.
Test coverage should be 100%, with both
negative and positive cases covered. Usage
of contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

Baal is a minimal yet composable DAO template continuing work from the
Moloch, Minion and Compound frameworks to make it easier for people to
combine and command crypto assets with intuitive membership games. It has
the following contracts:

● Baal — is a minimal yet composable DAO template continuing work from
the Moloch, Minion and Compound frameworks to make it easier for
people to combine and command crypto assets with intuitive membership
games.

● Shares — have direct execution, voting and exit rights around actions
taken by the main DAO contract. Shareholders are the collective DAO
admins.

● Loot - has only exit rights against the DAO treasury, so loot does
not have the ability to admin the DAO config. However, because it has
exit rights, it is still a powerful unit, and because it is an ERC-20
can be used in many composable ways.

● TributeMinion - is a helper contract for making tribute proposals.
Provides contract to approve ERC-20 transfers. Provides a simple
function/interface to make a single proposal type.

● Poster - is a simple function that posts some data to events, these
events can then be indexed for access by frontends; sed for all types
of content and metadata capture.

Privileged roles
● Shamans - are specific addresses that have more granular control

outside the standard governance proposal flow. These addresses should
always be contracts that have been explicitly given these rights
through the standard proposal flow or during initial DAO setup.

● Governor - can cancel a proposal, set Governance Config (change the
length of proposals, if there is a required quorum, etc.).

● Manager - can mint/burn shares/loot.
● Admin - can set Admin configuration and pause/unpause shares/loot.
● DAO - is always a super admin over its config. Can vote to make

changes to its configuration at any time.

Risks
● In case of Baal keys leak, an attacker can get access to Baal

(admin) functionalities, burn, mint, give shaman roles etc.
● The Baal contract uses the getPriorVotes function that accepts

timestamp instead of commonly used block number. The developers
should ensure that they use the correct implementation of the token.

www.hacken.io
11

Findings

Critical

No high severity issues were found.

High

1. Library code should not be copied

Code from the popular OpenZeppelin library is copied into the
codebase.

This leads to an unnecessary increase in the audit scope and
introduces accidental change risks to otherwise safe and audited
code.

Paths: ./contracts/LootERC20.sol : transferFrom, name, symbol

./contracts/SharesERC20.sol : transferFrom, name, symbol

Recommendation: Remove the copy-pasted code. Remove overriding for
transferFrom function.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

Medium

1. Denial of Service vulnerability

External calls can fail accidentally or deliberately, which can cause
a DoS condition in the contract. Inside the Baal’s totalSupply
function, there are two external calls ‘lootToken.tokenSupply’ and
‘sharesToken.tokenSupply’.

This can lead to DoS condition in the contract

Path: ./contracts/Baal.sol : totalSupply()

Recommendation: Isolate each external call into its own transaction
that can be initiated by the recipient of the call.

Status: Mitigated (with Customer notice)

2. Assembly usage

CloneFactory implements ‘createClone’ functionality using assembly.
Assembly usage can lead to error in implementation.

Path: ./contracts/Baal.sol : CloneFactory:createClone(address)

Recommendation: Use clone functionality from OpenZeppelin library.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

Low

www.hacken.io
12

1. Floating pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

The project uses floating pragmas 0.8.0.

Paths: ./contracts/Baal.sol

./contracts/LootERC20.sol

./contracts/SharesERC20.sol

./contracts/interfaces/IBaal.sol

./contracts/mock/MockBaal.sol

./contracts/mock/TestAvatar.sol

./contracts/mock/TestERC20.sol

./contracts/tools/Poster.sol

./contracts/tools/TributeMinionr.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

2. State variable default visibility

Labeling the visibility explicitly makes it easier to catch incorrect
assumptions about who can access the variable.

Paths: ./contracts/Baal.sol : status, multisendLibrary,
gnosisSafeProxyFactory, moduleProxyFactory

./contracts/tools/TributeMinion.sol : escrow

Recommendation: Variables can be specified as being public, internal,
or private. Explicitly define visibility for all state variables.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

3. Variable shadowing

Solidity allows for ambiguous naming of state variables when
inheritance is used.

Loot’s and Shares state variables ‘_name’ and ‘_symbol’ shadow ERC20
state variables.

Paths: ./contracts/LootERC20.sol : _name, _symbol

www.hacken.io
13

./contracts/SharesERC20.sol : _name, _symbol

Recommendation: Rename related variables/arguments.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

4. Commented code parts

Commented parts of code in a contract. They will not cause any
security issues, but make code less clear.

In the contracts : Shares (lines 116-120, 125, 137, 233)
TributeMinion (lines 5, 126, 133, 138), Baal (lines 381, 1164) are
commented parts of code.

This reduces code quality.

Paths: ./contracts/LootERC20.sol

./contracts/SharesERC20.sol

./contracts/Baal.sol

Recommendation: Remove commented parts of code.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

5. Unused variable

Unused variables should be removed from the contracts. Unused
variables are allowed in Solidity and do not pose a direct security
issue. It is best practice to avoid them as they can cause an
increase in computations (and unnecessary Gas consumption) and
decrease the readability.

The variable ‘nonces’ is never used inside the Baal contract.

Path: ./contracts/Baal.sol

State variable : nonces

Recommendation: Remove unused variables.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

6. Redundant import

The use of unnecessary imports will increase the Gas consumption of
the code. Thus they should be removed from the code.

The second usage of Enum.sol is unnecessary for the Baal.sol
contract.

Path: ./contracts/Baal.sol

Import: "@gnosis.pm/safe-contracts/contracts/common/Enum.sol"

www.hacken.io
14

Recommendation: Remove the duplicate import.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

7. Missing zero address validation

Address parameters inside the BaalSammoner contract are being used
without checking against the possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/Baal.sol

Constructors: _lootSingleton, _sharesSingleton, _gnosisSingleton

Recommendation: Remove the duplicate import.

Status: Fixed (Revised commit:
15bf835955e20c75c47e2d3d89341b394607d691)

www.hacken.io
15

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
16

