n Qua ntStamp Security Assessment Certificate

October 18th 2022 — Quantstamp Verified

Moloch V3

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type DAO

A High Risk The issue puts a large number of users’

Auditors Ibrahim Abouzied, Auditing Engineer sensitive information at risk, or is

Danny Aksenov, Security Auditor reasonably likely to lead to catastrophic

impact for client’s reputation or serious

Fatemeh Heidari, Securltg Auditor financial implications for client and

users.
Timeline 2022-09-16 through 2022-09-23
EVM Arrow Glacier ~ Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
Languages Solidity detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
Methods Architecture Review, Unit Testing, Functional to moderate financial impact.
Testing, Computer-Aided Verification, Manual
Review Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
Specification Baal Docs risk that the client has indicated is low-
impact in view of the client’s business
Documentation Quality ————— g h circumstances.
Test Quqhtg B ngh
Informational The issue does not post an immediate

risk, but is relevant to security best
Source Code J

Repository Commit practices or Defence in Depth.
HausDAO/Baal 5bbé4eab ? Undetermined The impact of the issue is uncertain.
None
HausDAO/Baal 84b7673
None © Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.
Total Issues 16 (7 Resolved)
Acknowledged The issue remains in the code but is a
High Risk Issues 1 (1 Resolved) result of an intentional business or
design decision. As such, it is supposed
Medium Risk Issues 1 (1 Resolved) 0 Unresolved to be addressed outside the
programmatic means, such as: 1)
Low Risk Issues 5 (3 Resolved) 9 Acknowledged comments, documentation, README,
7 Resolved FAQ; 2) business processes; 3) analyses
Informational Risk Issues 7 (2 Resolved) showing that the issue shall have no
negative consequences in practice
Undetermined Risk Issues 2 (0 Resolved) (e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

° Mitigated Implemented actions to minimize the

impact or likelihood of the risk.

https://baal-docs.vercel.app/
https://github.com/HausDAO/Baal
https://github.com/HausDAO/Baal

Summary of Findings

Moloch V3 brings Baal, a DAO template that allows DAOs to easily deploy on-chain governance and integrate with a new or existing treasury. One of the more notable features in V3 is the
use of Shamans: external contracts that the DAO approves to carry out DAO functions without a DAO proposal. This includes actions such as minting/burning shares and loot, adjusting
governance parameters, and toggling share/loot transferability.

It is important to note that due to Baal's composability, it is expected that DAOs will choose to integrate Baal with a variety of Shaman smart contracts. With the infinite possibilities of
Shaman implementations, the scope of this audit can only assess the security of the base Baal template. DAOs should make their own assessments of a smart contract's security before
making it a Shaman.

A few vulnerabilities were discovered, though we found the protocol to be well-designed as a whole, with most of the vulnerabilities requiring minimal changes to address. We recommend
that the HausDAO team address these vulnerabilities before making Moloch V3 available to users.

A cursory view of the unit tests indicates a strong testing suite, but this cannot be confirmed as we were unable to run coverage analysis on the unit tests. We encourage the HausDAO
team to instrument unit test coverage to validate strong code coverage.

ID Description Severity Status

QSP-1 Checkpoints May Not Be Written Correctly A High Fixed

QSP-2 Baal Inherits From Non-Upgradeable Contracts ~ Medium Fixed

QSP-3 Integer Overflow / Underflow Fixed

QSP-4 Missing Input Validation Mitigated
QSP-5 Ownership Can Be Renounced Acknowledged
QSP-6 Shamans Can Be an EOA Address Acknowledged
QSP-7 Signed Votes Do Not Expire Fixed

QSP-8 Application Monitoring Can Be Improved by Emitting More Events Fixed

QSP-9 setAdminConfig Always Emits Two Events Even if State Is Not Changed. Fixed

QSP-10 Risk of Killing Upgrades Acknowledged
QSP-11 Clone-and-Own Acknowledged
QSP-12 A DAQ's Safety Is Dependent on the Safety of Its Shamans Acknowledged
QSP-13 Upgradability Acknowledged
QSP-14 msg.sender Can Be Overridden. Acknowledged
QSP-15 External Calls to Malicious Contracts 7 Undetermined Acknowledged

QSP-16 Proposals Can Pass without a Valid Sponsor 7 Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

DISCLAIMER:
The audit was performed on the following files only: contracts/*

The audit excluded the following files: contracts/mock/*

Possible issues we looked for included (but are not limited to):

 Transaction-ordering dependence

« Timestamp dependence

» Mishandled exceptions and call stack limits

« Unsafe external calls

* Integer overflow / underflow

« Number rounding errors

« Reentrancy and cross-function vulnerabilities
« Denial of service / logical oversights

* Access control

« Centralization of power

 Business logic contradicting the specification
« Code clones, functionality duplication

« Gas usage

* Arbitrary token minting

Methodology
The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.
ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp

describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the

established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.
Toolset
The notes below outline the setup and steps performed in the process of this audit.
Setup
Tool Setup:

e Slither vO.8.3

Steps taken to run the tools:

1. Install the Slither tool: pip3 install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Checkpoints May Not Be Written Correctly

Severity: High Risk

Status: Fixed

File(s) affected: BaalVotes. sol

Description: BaalVotes hasa writeCheckpoint() function that is used to track changes in the number of votes and delegates. It incorrectly assumes that getCheckpoint () will return

the data type Checkpoint storage when it actually returns Checkpoint memory. The two functions have been reproduced below.

function _writeCheckpoint(
address delegatee,
uint256 nCheckpoints,
uint256 oldVotes,
uint256 newVotes
) private {
uint32 timeStamp = uint32(block.timestamp);

unchecked {

https://github.com/crytic/slither

if (
nCheckpoints != 0 &&
getCheckpoint(delegatee, nCheckpoints - 1).fromTimeStamp ==

timeStamp
) {
getCheckpoint(delegatee, nCheckpoints - 1).votes = newVotes; // <- This change will not persist.
} else {
checkpoints[delegatee][nCheckpoints] = Checkpoint(
timeStamp,
newVotes
DK
numCheckpoints[delegatee] = nCheckpoints + 1;
b
by
emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
3
function getCheckpoint(address delegatee, uint256 nCheckpoints)
public
view
virtual
returns (Checkpoint memory)
{
return checkpoints[delegatee][nCheckpoints];
3

Recommendation: Update the code segment so that _writeCheckpoint() updates the storage address.

Update: getCheckoutpoint() has been replaced by checkpoints[delegatee][nCheckpoints - 1] in _writeCheckpoint() function.

QSP-2 Baal Inherits From Non-Upgradeable Contracts

Severity: Medium Risk

Status: Fixed

File(s) affected: Baal . sol

Description: Baal is intended to be an upgradeable contract, as indicated by its use of a setUp() function. However, it inherits from non-upgradeable contracts EIP712 and

ReentrancyGuard.
Additionally, versionRecipient is initialized outside of the setUp() function and will not be initialized in any proxies.

Recommendation: Replace the non-upgradeable contracts with their upgradeable counterparts from Open-Zeppelin.

Assign versionRecipient in the setUp() function.

Update: Contracts in question have been replaced by their upgradeable counter-parts and are being initialized in the initializer function. draft-EIP712Upgradeable. sol can be replaced
with EIP712Upgradeable. sol as OZ has recently finalized their EIP712 implementation.

QSP-3 Integer Overflow / Underflow

Status: Fixed

File(s) affected: Baal . sol
Related Issue(s): SWC-101

Description: Unchecked operations can lead to overflow/underflow. proposal Count in the Baal . submitProposal (. .) function is increased by one for every proposal submitted. If

proposalOffering is small or zero, it is possible for submitProposal (. .) to be called repeatedly until the proposal Count reaches its max value and overflows.
Recommendation: Remove unchecked operations on proposal Count to prevent overflow.

Update: The unchecked operation has been removed.

QSP-4 Missing Input Validation

Status: Mitigated

File(s) affected: Baal . sol, Baal Summoner.sol, BaalVotes.sol, LootERC20, SharesERC20
Related Issue(s): SWC-123

Description: It is important to validate inputs, even if they only come from trusted addresses, to avoid human error. Some functions do not validate their inputs, which can result in unexpected

behavior by the contracts. A non-exhaustive list includes:

* Baal .setUp(): Validate that all addresses are non-zero.
* Baal . submitProposal (): Validate that expiration is not less than block.timestamp.

* Baal . setGovernanceConfig()

. Validate that quorum is a value between 0..100.
. Validate that minRetention is a value between 0..100.

. Validate that sponsor is a value below sharesToken.total Supply().

* BaalSummoner.constructor(): Validate that all addresses are non-zero.
* BaalVotes.delegateBySig(): Validate that the signer is a non-zero address.
* LootERC20.setUp(): Validate that name_ and _symbol are non-empty strings.

« SharesERC20.setUp(): Validate that name_ and _symbol are non-empty strings.

Recommendation: We recommend adding the relevant checks.

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/utils/cryptography/draft-EIP712Upgradeable.sol
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123

Update: All of the missing input validation checks have been implemented except for one in Baal . setGovernanceConfig():

require(quorum >= @ && minRetention <= 100, 'bad quorum');
should be replaced with:

require(quorum >= @ && quorum <= 100, 'bad quorum');

QSP-5 Ownership Can Be Renounced

Status: Acknowledged

File(s) affected: LootERC20.sol, SharesERC20.sol, Baal.sol

Description: If the owner renounces their ownership, all ownable contracts will be left without an owner. Consequently, any function guarded by the onl yOwner modifier will no longer be able

to be executed.
Recommendation: Double check if this is the intended behavior. Disable renounceOwnership() so that the contract always has an owner.

Update: The team has addressed this in their documentation.

QSP-6 Shamans Can Be an EOA Address

Status: Acknowledged

File(s) affected: Baal . sol

Description: A Shaman is a separate contract that the DAO approves to make critical changes to the DAO outside of the proposal process. Any address can be approved by the DAO to have
Shaman permissions, even if it is an EOA address.

Recommendation: In setShamans(), require that the addresses belong to contracts. This can be done by checking the extcodesize().

Update: The team has addressed this in their documentation.

QSP-7 Signed Votes Do Not Expire

Status: Fixed

File(s) affected: Baal . sol

Description: Members can submit a vote with an EIP-712 signature. With the current implementation, signed votes are considered to be valid indefinitely and can be submitted at any time within
the voting period. With a sufficiently long voting period, it is possible that a user may have changed their mind with regard to their vote.

Recommendation: Allow users to sign their vote with an expiration date after which the vote cannot be submitted.

Update: Signatures are now submitted with an expiry.

QSP-8 Application Monitoring Can Be Improved by Emitting More Events

Status: Fixed

File(s) affected: Baal . sol, TributeMinion. sol

Description: In order to validate the proper deployment and initialization of the contracts, it is a good practice to emit events. Also, any important state transitions can be logged, which is

beneficial for monitoring the contract, and also tracking eventual bugs or hacks. Below we present a non-exhaustive list of events that could be emitted to improve application management:

* Baal.lockAdmin(..)
* Baal.lockManager(..)
* Baal .lockGovernor(..)

e TributeMinion.releaseEscrow(..)

Recommendation: Consider emitting the events.

Update: The team has added the aforementioned events.

QSP-9 setadminconfig Always Emits Two Events Even if State Is Not Changed.

Status: Fixed

File(s) affected: Baal . sol
Description: The setAdminConfig function emits SharesPaused or LootPaused event regardless of whether a state change has actually occurred.
Recommendation: Revise the function to only emit events if the state is changed.

Update: The team has implemented the recommendation.

QSP-10 Risk of Killing Upgrades

https://moloch.daohaus.fun/features/tokenUpgradability#ownership
https://moloch.daohaus.fun/features/shamanBestPractice#shaman-accounts

Status: Acknowledged

File(s) affected: LootERC20.sol, SharesERC20.sol

Description: Both the Loot and Shares tokens make use of the UUPS pattern for upgradeable contracts. One of the drawbacks of using such a pattern is that if a future implementation does not

implement the upgradeTo function, then upgrades for the tokens have effectively been killed.
Recommendation: Understand the drawbacks of using a UUPS pattern and document the potential risks for users.

Update: The team has addressed this in their documentation.

QSP-11 Clone-and-Own

Status: Acknowledged

File(s) affected: BaalVotes. sol

Description: The clone-and-own approach involves copying and adjusting open source code at one's own discretion. From the development perspective, it is initially beneficial as it reduces the
amount of effort. However, from the security perspective, it involves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or

unintentionally modified upstream libraries. The open source code in question is Compound's governance token.

Recommendation: Rather than the clone-and-own approach, a good industry practice is to use a package manager (e.g., npm) for handling library dependencies. This eliminates the clone-
and-own risks yet allows for following best practices, such as using libraries. If the file is cloned anyway, a comment including the repository, the commit hash of the version cloned, and the

summary of modifications (if any) should be added. This helps to improve the traceability of the file.

Update: The team has addressed this in their documentation.

QSP-12 A DAQO's Safety Is Dependent on the Safety of Its Shamans

Status: Acknowledged

Description: A Shaman is a separate contract that the DAO approves to make critical changes to the DAO outside of the proposal process. Given that they may have permission to change the
contract's configuration, requirements for passing proposals, and mint/burn any user's loot/share tokens, it is important that DAO members thoroughly understand a contract before granting it
shaman permissions. Since DAOs are intended to come with their own Shaman contracts, the safety of any particular Shaman contract cannot be assessed and is outside the scope of this
audit.

Recommendation: Documentation should be written surrounding best practices for Shaman contracts. If a Shaman contract is upgradeable, the DAO should consider only allowing Baal to

trigger upgrades. If a Shaman contract is a Governor, it will have the power to change the Trusted Forwarder and impersonate any msg. sender.

Update: The team has addressed this in their documentation.

QSP-13 Upgradability

Status: Acknowledged

File(s) affected: Baal . sol, LootERC20, SharesERC20

Description: Many contracts within the project are upgradeable. While this is not a vulnerability, users should be aware that the behavior of the contracts could drastically change if the
contracts are upgraded. Furthermore, new vulnerabilities not present during the audit could be introduced in upgraded versions of the contract, or if contract upgrade deployments are not done

correctly.
Recommendation: The contract's upgradeability and any reasons for future upgrades should be communicated to users beforehand.

Update: The team has addressed this in their documentation.

QSP-'“-I- msg.sender Can Be Overridden.

Status: Acknowledged

File(s) affected: Baal . sol

Description: Baal implements the BaseRelayRecipient so that it can support Meta transactions. This comes with some security considerations, as outlined in EIP-2771:

A bad forwarder may allow forgery of the msg. sender returned from msgSender() and allow transactions to appear to be coming from any address. This means a recipient
contract should be very careful which forwarder it trusts and whether this can be modified. The power to change the forwarder trusted by a recipient is equivalent to giving full control
over the contract. If this kind of control over the recipient is acceptable, it is recommended that only the owner of the recipient contract be able to modify which forwarder is trusted.

Otherwise best to leave it unmodifiable.

Recommendation: Make sure only trusted addresses are trusted as forwarders. Make the power of a Governor Shaman changing the forwarder clear to users.

Update: The team has addressed this in their documentation.

QSP-15 External Calls to Malicious Contracts

Severity: Undetermined

Status: Acknowledged

File(s) affected: Baal . sol

https://moloch.daohaus.fun/features/tokenUpgradability#notes-on-uups-pattern
https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol
https://moloch.daohaus.fun/features/erc20TokenContracts
https://moloch.daohaus.fun/features/shamanBestPractice
https://moloch.daohaus.fun/features/tokenUpgradability
https://moloch.daohaus.fun/features/metaTransactions

Description: When a user calls Baal . ragequit (), ideally they burn their shares and loot in exchange for token's belonging to the DAQO's treasury, however the user provides the token
addresses for the tokens they want to be paid out in. Because there is no validation done on the addresses provided for the tokens, the user can pass in addresses belonging to malicious

contracts, which may not behave as expected.

Recommendation: While no immediate threats were determined due to the heavy use of re-entrancy guards, we recommend validating the tokens being provided for ragequit to avoid any

potential exploits.

Update: The team has addressed this in their documentation.

QSP-16 Proposals Can Pass without a Valid Sponsor

Severity: Undetermined

Status: Acknowledged

File(s) affected: Baal . sol

Description: In Baal, a proposal needs a valid sponsor for voting to commence. A sponsor is considered valid if their balance of shares meets the sponsorThreshold. If their balance falls
below the sponsorThreshold, anyone can call the cancelProposal () function to cancel the proposal. However, this is not guaranteed to happen. If no one chooses to call

cancelProposal (), it is possible for the proposal to proceed through the proposal flow as if it had a valid sponsor.
Recommendation: Please clarify whether it is permissible for a proposal to pass without a valid sponsor. If not, update processProposal () to confirm that the proposal's sponsor is still valid.

Update: The team has addressed this in their documentation.

Automated Analyses

Slither

Contract locking ether found:
Contract BaalSummoner (contracts/BaalSummoner.sol#10-318) has payable functions:
- BaalSummoner.summonBaalFromReferrer(bytes,bytes[],uint256,bool ,bytes32) (contracts/BaalSummoner.sol#120-145)
But does not have a function to withdraw the ether

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether

Reentrancy in Baal.processProposal (uint32,bytes) (contracts/Baal.sol#472-530):
External calls:
- success = processActionProposal (proposalData) (contracts/Baal.sol#523)
- IGuard(guard).checkTransaction(to,value,data,operation,0,0,0,address(0),address(0),bytes(0x),msg.sender) (node_modules/@gnosis.pm/zodiac/contracts/core/Module.sol#51-65)
- success = IAvatar(target).execTransactionFromModule(to,value,data,operation) (node_modules/@gnosis.pm/zodiac/contracts/core/Module.sol#67-72)
- IGuard(guard).checkAfterExecution(bytes32(0x),success) (node_modules/@gnosis.pm/zodiac/contracts/core/Module.sol#74)
State variables written after the call(s):
- prop.status[3] = true (contracts/Baal.sol#525)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1

Baal.setUp(bytes)._avatar (contracts/Baal.sol#235) lacks a zero-check on :
- avatar = _avatar (contracts/Baal.sol#247)
- target = _avatar (contracts/Baal.sol#248)
Baal .setUp(bytes). multisendLibrary (contracts/Baal.sol#234) lacks a zero-check on :
- multisendLibrary = _multisendLibrary (contracts/Baal.sol#257)
Baal .executeAsBaal (address,uint256,bytes)._to (contracts/Baal.sol#571) lacks a zero-check on :
- (success) = _to.call{value: _value}(_data) (contracts/Baal.sol#575)
Baal Summoner.constructor(address,address,address,address,address,address,address,address)._template (contracts/BaalSummoner.sol#48) lacks a zero-check on :
- template = _template (contracts/BaalSummoner.sol#60)
BaalSummoner.constructor(address,address,address,address,address,address,address,address)._gnosisFallbackLibrary (contracts/BaalSummoner.sol#50) lacks a zero-check on :
- gnosisFallbackLibrary = _gnosisFallbackLibrary (contracts/BaalSummoner.sol#62)
Baal Summoner.constructor(address,address,address,address,address,address,address,address)._gnosisMultisendLibrary (contracts/BaalSummoner.sol#51) lacks a zero-check on :
- gnosisMultisendLibrary = _gnosisMultisendLibrary (contracts/BaalSummoner.sol#63)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Reentrancy in Baal.submitProposal(bytes,uint32,uint256,string) (contracts/Baal.sol#298-360):

External calls:

- (_success) = target.call{value: msg.value}() (contracts/Baal.sol#315)

State variables written after the call(s):

- latestSponsoredProposalld = proposalCount (contracts/Baal.sol#344)

- proposalCount ++ (contracts/Baal.sol#322)

- proposals[proposalCount] = Proposal(proposalCount,latestSponsoredProposalld,uint32(block.timestamp),uint32(block.timestamp) + votingPeriod,uint32(block.timestamp) + votingPeriod + gracePeriod,expiration,baalGas,9,0,0,
(false,false,false,false), _msgSender(),proposalDataHash,details) (contracts/Baal.sol#323-340)

- proposals[proposalCount] = Proposal(proposalCount,0,0,0,0,expiration,baalGas,0,0,0,(false,false,false,false),address(0),proposalDataHash,details) (contracts/Baal.sol#323-340)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2

Code Documentation

Overall the code is well documented and makes use of NatSpec. The HausDAO team has excellent documentation outlining the contracts and how Moloch V3 builds on its

predecessors.

Adherence to Best Practices

* In the Baal contract, replace draft-EIP712 with EIP712.

* Executor and GnosisSafe are imported in Baal but not used.

* Proposal id is uint32 but defined as uint256 in proposals.

* Ox70a08231 in Baal .sol#L628 can be defined as a constant.

* [t is better to define an initialize function for BaalVotes contract and call = ERC20Permit_init in that function.
* Define an enum for shamans

* Baal Summoner inherits from ModuleProxyFactory, so there is no need to construct Baal Summoner with moduleProxyFactory, since the calls to

ModuleProxyFactory.deployModule()#L230,280 can be made by Baal Summoner.
* If Baal .proposalOffering is equal to zero, avoid calling target.call{value: msg.value} in submitProposal ()#L315.
* Baal .sol: Set the constructor to call _disableInitializers() rather than use the initializer modifier.

* Baal .sol: Consider moving the checks for proposal expiration, reaching quorum, and meeting the minimum retention percentage from processProposal () to

state() in the ProposalState.Defeated section.
* Baal .sol: Update the function casing to match its visibility: processActionProposal ().

* Baal .sol: In getProposalStatus(), require that the proposal exists.

https://moloch.daohaus.fun/features/ragequit#special-notee
https://moloch.daohaus.fun/features/proposalFlow

* BaalSummoner. sol: BaalSummoner implements ModuleProxyFactory but makes the calls using its modul eProxyFactory variable. Either remove

ModuleProxyFactory as a parent or make the calls through Baal Summoner rather than the moduleProxyFactory variable.

* BaalSummoner. sol: Update the function casing to match its visibility: deployAndSetupSafe().

Test Results

Test Suite Results

The test suite was run by calling npx hardhat test.

Compiled 81 Solidity files successfully

Baal contract
constructor
v/ verify deployment parameters
token ownership
v/ can not transfer ownership when not owner
v/ can not be upgraded when not owner
v/ can renounce loot token ownership
v/ can renounce shares token ownership
v/ can change shares token ownership to avatar
v/ can change loot token ownership to avatar
upgrade
v/ can eject and upgrade token with eoa
shaman actions - permission level 7 (full)
v/ setAdminConfig
mint shares - recipient has shares

mint shares

new recipient
mint shares - recipient has delegate - new shares are also delegated

mint shares zero mint amount - no votes

mint shares require fail - array parity
burn shares
burn shares - require fail - array parity

burn shares

require fail - insufficent shares
mint loot

mint loot - require fail - array parity

burn loot

burn loot - require fail - array parity

burn loot - require fail - insufficent shares

set trusted forwarder

have shaman mint and burn _delegated_ shares
setGovernanceConfig

setGovernanceConfig - doesnt set voting/grace if =0
cancelProposal - happy case - as gov shaman
cancelProposal - happy case - as proposal sponsor
cancelProposal - happy case - after undelegation
cancelProposal - require fail - not cancellable by rando

A N N N N N N N N N Y U N N U U N N N U N N NN

cancelProposal - require fail - !voting (submitted)
cancelProposal - require fail - !voting (grace)
cancelProposal - require fail - !voting (defeated)
cancelProposal - require fail - !voting (cancelled)
cancelProposal - require fail - !voting (ready)

v cancelProposal - require fail - !voting (processed)

shaman permissions: 0-6

v/ permission = all actions fail

admin actions succeed

permission

permission = manager actions succeed

admin + manager actions succeed

permission = governor actions succeed

NS SN NSNS

permission =

0
1
2

permission = 3
4
5 admin + governor actions succeed
6

v/ permission = - manager + governor actions succeed
shaman locks

v/ lockAdmin

v/ lockManager

v/ lockGovernor
setShamans - adminLock (1, 3, 5, 7)

v/ setShamans - @ - success

v/ setShamans - 1 - fail
v/ setShamans - 2 - success
v/ setShamans - 3 - fail
v/ setShamans - 4 - success
v/ setShamans - 5 - fail
v/ setShamans - 6 - success

v/ setShamans - 7 - fail
setShamans - managerLock (2, 3, 6, 7)

v/ setShamans - @ - success
v/ setShamans - 1 - success
v/ setShamans - 2 - fail
v/ setShamans - 3 - fail
v/ setShamans - 4 - success
v/ setShamans - 5 - success
v/ setShamans - 6 - fail

v/ setShamans - 7 - fail
setShamans - governorLock (4, 5, 6, 7)

v/ setShamans - @ - success

v setShamans - 1 - success
v/ setShamans - 2 - success
v/ setShamans - 3 - success
v/ setShamans - 4 - fail
v/ setShamans - 5 - fail
v/ setShamans - 6 - fail
v/ setShamans - 7 - fail

setShamans - all locked
v/ setShamans - @ - success

v/ setShamans - 1 - fail
v/ setShamans - 2 - fail
v/ setShamans - 3 - fail
v/ setShamans - 4 - fail
v/ setShamans - 5 - fail
v/ setShamans - 6 - fail
v/ setShamans - 7 - fail

erc20 shares - approve

v/ happy case

v/ overwrites previous value
erc20 shares - transfer

v/ transfer to first time recipient - auto self delegates

v/ require fails - shares paused

v/ require fails - insufficient balance

/ 0 transfer - doesnt update delegates

v/ self transfer - doesnt update delegates

v/ transferring to shareholder w/ delegate assigns votes to delegate
erc20 shares - transferFrom

v/ transfer to first time recipient

v/ require fails - shares paused

v/ require fails - insufficeint approval
erc20 loot - approve

v/ happy case

v/ overwrites previous value
erc20 loot - transfer

/ sends tokens, not votes

v/ require fails - loot paused

v/ require fails - insufficient balance
erc20 loot - transferFrom

v/ sends tokens, not votes

v/ require fails - loot paused

v/ require fails - insufficient balance

v/ require fails - insufficeint approval
submitProposal

v/ happy case

v/ require fail - expiration passed

v/ edge case - expiration exists, but far enough ahead
sponsorProposal

v/ happy case
require fail - proposal expired
edge case - expiration exists, but far enough ahead 2
require fail - not sponsor

edge case - just enough shares to sponsor

NN Y N

require fail - proposal doesnt exist

v/ require fail - already sponsored
submitVote (w/ auto self-sponsor)

v/ happy case - yes vote

v/ happy case - no vote

v/ require fail - voting period has ended

v/ require fail - already voted

v/ require fail - not a member

v/ scenario - two yes votes
submitVote (no self-sponsor)

v/ require fail - voting not started

v/ scenario - increase shares during voting

v/ scenario - decrease shares during voting
submitVoteWithSig (w/ auto self-sponsor)

v/ happy case - yes vote

v/ fail case - fails with different voter

v fail case - cant vote twice
delegateBySig

v/ happy case

v/ require fail - nonce is re-used

v/ require fail - signature expired
processProposal

v/ happy case yes wins
require fail - not enough gas
has enough baalGas
require fail - no wins, proposal is defeated

require fail

proposal does not exist

require fail - no sponser

require fail prev proposal not processed

require fail - proposal data mismatch on processing
require fail - proposal not in voting

require fail - proposal cancelled

require fail - proposal expired 2

edge case - exactly at quorum

edge case - just under quorum

edge case - exactly at minRetentionPercent

edge case - just below minRetentionPercent - shares+loot
edge case - just below minRetentionPercent - just shares
edge case - just below minRetentionPercent - just loot

scenario - offer tribute unsafe

scenario - two propsals, prev is processed
scenario - two propsals, prev is defeated
scenario - two propsals, prev is cancelled
happy case - mint shares via proposal
happy case - burn shares via proposal

N NN SNSNSNSNSHSKNAEAASNASASNASNSNSNSASNSSASSNS SN S SN

happy case - mint loot via proposal

N

happy case - burn loot via proposal
ragequit

v/ happy case - full ragequit

v/ happy case - partial ragequit

v/ happy case - full ragequit to different address

v/ happy case - full ragequit - two tokens
ragequit

v/ collects tokens not on the list

v/ require fail - enforces ascending order

v/ require fail - prevents actual duplicate
getCurrentVotes

v/ happy case - account with votes

v/ happy case - account without votes
getPriorVotes

v/ happy case - yes vote

v/ happy case - no vote

v/ require fail - timestamp not determined

Baal contract - offering required
submitProposal
v/ submit proposal
v/ happy case - sponsors can submit without offering, auto-sponsors
v/ edge case - sponsors can submit without offering at threshold
v/ require fail - no offering offered

Baal contract - summon baal with current safe
Baal summoned after safe
v/ should have the expected address of the module the same as the deployed

Loot ERC20 contract
constructor
v/ creates an unusable template
v/ require fail - initializer (setup) cant be called twice on loot
v/ require fail - initializer (setup) cant be called on singleton
er20 loot - authorized minting, burning
v happy case - allows baal to mint when loot not paused
happy case - allows baal to mint when loot paused
require fail - non baal tries to mint
happy case - allows baal to burn when loot not paused
happy case - allows baal to burn when loot paused

NN NN SN

require fail - non baal tries to burn
v/ require fail - non baal tries to send to 0@
er20 loot - restrict transfer
v happy case - allows loot to be transferred when enabled
v/ require fail - tries to transfer loot when paused
v/ happy case - allows loot to be transfered with approval when enabled
v/ require fail - tries to transfer with approval loot when paused
erc20 loot - increase allowance with permit
v/ happy case - increase allowance with valid permit

v Require fail - invalid nonce

v/ Require fail - invalid chain Id
v/ Require fail - invalid name

v/ Require fail - invalid address
v/ Require fail - invalid owner

v/ Require fail - invalid spender
v/ Require fail - invalid amount

v/ Require fail - invalid deadline
v/ Require fail - expired deadline

Tribute proposal type
Dangerous proposal tribute
v/ Allows applicant to tribute tokens in exchagne for shares
v/ EXPLOIT - Allows another proposal to spend tokens intended for tribute
Baal with NO proposal offering - Safe Tribute Proposal
{ state: 6, propStatus: [false, true, true, false] }
v/ allows external tribute minion to submit share proposal in exchange for tokens
{ state: 6, propStatus: [false, true, true, false] }
v/ tribute without proposal offering
Baal with proposal offering - Safe Tribute Proposal
{ state: 6, propStatus: [false, true, true, false] }
v/ allows external tribute minion to submit share proposal in exchange for tokens
{ state: 6, propStatus: [false, true, true, false] }
v/ should not fail to tribute without offering
v/ fails to tribute without offering

——— B e e e e R R et EET R et e
| Solc version: 0.8.7 - Optimizer enabled: true - Runs: 100 - Block limit: 30000000 gas |

| Baal - burnLoot g 60614 - 65439 - 61828 - 4 - =

..................... |||| |
| Baal burnShares 99178 123903 109074 5 =
..................... |||| |
| Baal cancelProposal 78286 101048 95700 9 =
..................... |||| |
| Baal mintLoot 65198 82293 78012 4 -
..................... |||| |
| Baal mintShares 59465 169123 140882 18 =
..................... |||| |
| Baal processProposal 101887 322863 191069 114 -
..................... |||| |
| Baal ragequit 89266 197575 163177 10 =
..................... |||| |
| Baal setAdminConfig 82179 107955 95072 8 -
..................... |||| |
| Baal setGovernanceConfig 77466 122854 97791 11 -
..................... |||| |
| Baal setTrustedForwarder 31584 31610 31599 4 =
..................... |||| |
| Baal sponsorProposal 101538 107906 106632 5 -
..................... |||| |
| Baal submitProposal 164563 269779 233425 158 =
..................... |||| |
| Baal submitVote 119916 158852 154999 128 -
..................... |||| |
| Baal submitVoteWithSig 195329 195337 195333 2 =
..................... |||| |
| BaalSummoner summonBaal 1491576 1491588 1491586 62 =
..................... |||| |
| BaalSummoner summonBaalAndSafe 1728329 1899963 1738204 348 -
..................... |||| |
| ERC20Upgradeable approve 34012 51124 48541 15 =
..................... |||| |
| ERC20Upgradeable transfer 38954 211116 128576 12 -
..................... |||| |
| ERC20Upgradeable transferfFrom 66670 214223 116709 3 =
..................... |||| |
| Loot mint - - 102637 1 -
..................... |||| |
| Loot permit - - 81977 1 -
..................... |||| |
| MockBaal burnLoot = = 52050 2 =
..................... |||| |
| MockBaal mintLoot 68875 85987 83542 28 -
..................... |||| |
| MockBaal setLootPaused = = 59322 4 =
..................... |||| |
| Shares delegate 129408 141694 134320 5 =
..................... |||| |
| Shares delegateBySig - - 177473 2 -
..................... |||| |
| TestAvatar enableModule 43917 43929 43928 31 =
..................... |||| |
| TestERC20 approve 46059 46083 46077 8 -
..................... |||| |
| TestERC20 transfer 51401 51413 51406 16 =
..................... |||| |
| TributeMinion submitTributeProposal 295445 302660 300537 4 =
..................... |||| |
| Deployments % of limit
... ||| |
| Baal - - 5345285 17.8 % -
... ||| |
| BaalLessShares - - 2262192 7.5 % -
... ||| |
| BaalSummoner 2087288 2087324 2087320 7 % =
... ||| |
| CompatibilityFallbackHandler - - 874768 2.9 % -
... ||| |
| GnosisSafe = = 2706330 9 % =
... ||| |
| GnosisSafeProxyFactory - - 608497 2 % -
... ||| |
| Loot - - 2302723 7.7 % -
... ||| |
| MockBaal - - 557766 1.9 % -
... ||| |
| ModuleProxyFactory - - 257108 0.9 % -
... ||| |
| MultiSend = = 181745 0.6 % =
... ||| |
| Poster - - 153433 0.5 % -
... ||| |
| Shares - - 2569949 8.6 % -
... ||| |
| TestAvatar - - 452713 1.5 % -
... ||| |
| TestERC20 489412 489436 489422 1.6 % =
... ||| |
| TributeMinion = = 883637 2.9% =
--- |-------------|----- e e e
196 passing (1m)

Code Coverage

The code coverage was gathered by

running npx hardhat coverage

contracts/
Baal .sol
Baal Summoner. sol
LootERC20.sol
SharesERC20.sol
contracts/fixtures/ |
GnosisImports.sol
contracts/interfaces/ |
TAdminShaman. sol
IBaal.sol
IBaalToken.sol
IGovernorShaman.sol
IManagerShaman.sol
contracts/mock/ |
BaalLessToken.sol
MockBaal .sol
TestAvatar.sol
TestERC20.sol
contracts/tools/ |
TributeMinion.sol
contracts/utils/ |
BaalVotes.sol
Poster.sol

---------- | seessessas || aocsccnoos || essaonasss || conaooascacoocos |
% Stmts | % Branch | % Funcs | % Lines |Uncovered Lines |
—————————— R I B e
95.32 | 82.56 | 91.55 | 94.53 |
| 96.62 | 88.73 | 93.33 | 95.76 |... 9,1016,1046
| 90.63 | 43.75 | 88.89 | 90.32 |... 139,146,147
| 92.86 | 66.67 | 77.78 | 92.86 | 42
| 100 | 62.5 | 100 | 100 |
100 | 100 | 100 | 100 | |
| 100 | 100 | 100 | 100 |
100 | 100 | 100 | 100 | |
100	100	100	100
100	100	100	100
100	100	100	100
100	100	100	100
100	100	100	100
70	27.78	70	75.56
85.71	50	66.67	85.71
77.78	25	100	87.5
25	20	33.33	25
100	50	100	100
100	60	100	100
100	60	100	100
92.73	80	100	98
92.59	80	100	97.96
100	100	100	100
—————————— R I B e
92.4 | 76.96 | 88.46 | 93.18 |
—————————— | s=esssssas || eeossconos || sosoononos || conoonsononaonos |

--network localhost.

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

48584183d5dfbb41bled3£fb743985cc53923bd9£6a£9989e1827575ale9cc4le
blaa92ba3£f9a3933d827d22c292a7118e13fb646bd8ad3c2e@b69923e2f106be
431819£f6189d67894746289£939a9b5abc0ef69£f0157¢c7£775779a07cc8563c
13b£3956d21633a404ae7cd47cftb52£36blc3bfdd8253444bd55783920£8£1c9
e3d5ef55049261a632e6€9574cb2445a916d890917b£406d6dd2d8ac87a00el3
111d36e7e8e£1159593ab27£fc3d2b4064800a6a58d0f3e92eb8ee786€039ba80
9248de2179539a93e05b4cdf71a4872b254b3a45e31cal42279d3c6cc5a7ed65
4ccalbBd34eeal28c4eb5e12e88f61ce38c91cOfebecdba/bf89c5f4c2f1cPable
f£f98£47241057a547099bbecc8e570£8c68e43a808£a12553a082389e65c21d5
ebbdcb6261lefc30da5643e118d2c47c1b9£d6c5355e£478c87dadcbd901d8835
42efee9b4eb7ale2460d723e9faal55d8a%9a31e13d152a£80c0236cb0f2623d47
1056b977add10aad3f5db765c2c48187dc15£ad6928£7£26f7c4dd12276c4081
2ec75e440c0839fe30d481a82e4012fdb4ccfcf0d40bf1d08£33a333c905b88E
1e36637498da3d4d6a746beed29fb27d5b9%e2c32e2a9b740e68e2f78c2726£77
5d4de6212c473336£189a1b32c297ac149d3ba57£6a71e522da037e6231ef3f4
aab276f15edc4522d77218d1c5fdceac577£c3266cc36955e076357089e389£6

c3ff47fe7d9eab05£5204858986ede5e825eed398a77b2fefc9939a70b0df3ca’

Tests

76c5535497564bb1211c30b193cd/736834£5b2£770957359e27035d/78283115e8
460ec505d4/9a9de8c7783c2a810£9a0b0bd9e034c3b12488a38/b84eba53643

9dc2607baabe’3665babeb683b7721749902a750afcef6al43b28dd180aad8c475

Changelog

« 2022-09-21 - Initial report

./contracts/Baal .sol
./contracts/SharesERC20. sol
./contracts/Baal Summoner. sol
./contracts/LootERC20. sol
./contracts/interfaces/IAdminShaman. sol
./contracts/interfaces/IBaalToken.sol
./contracts/interfaces/IGovernorShaman.sol
./contracts/interfaces/IManagerShaman. sol
./contracts/interfaces/IBaal.sol
./contracts/fixtures/GnosisImports.sol
./contracts/utils/Poster.sol
./contracts/utils/BaalVotes.sol
./contracts/mock/MockBaal .sol
./contracts/mock/BaalLessToken.sol
./contracts/mock/TestERC20. sol
./contracts/mock/TestAvatar.sol

./contracts/tools/TributeMinion. sol

./test/BaalSafe.test.ts
./test/Tribute.test.ts

./test/LootERC20.test.ts

About Quantstamp

Quantstamp is a global leader in blockchain security backed by Pantera, Softbank, and Commonwealth among other preeminent investors. Founded in 2017, Quantstamp's

mission is to securely onboard the next billion users to Web3 through its white glove security and risk assessment services.

The team consists of web3 thought leaders hailing from top organizations including Microsoft, AWS, BMW, Meta, and the Ethereum Foundation. Many of the auditors hold
PhDs or advanced computer science degrees, with decades of combined experience in formal verification, static analysis, blockchain audits, penetration testing, and
original leading-edge research.

To date, Quantstamp has performed more than 250 audits and secured over $200 billion in digital asset risk from hackers. In addition to providing an array of security

services, Quantstamp facilitates the adoption of blockchain technology through strategic investments within the ecosystem and acting as a trusted advisor to help projects
scale.

Quantstamp's collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to work with some of the top
names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:

* Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
* DeFi: Curve, Compound, Aave, Maker, Lido, Polygon, Arbitrum, SushiSwap
* NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, [lluvium, NBA Top Shot, Zora

« Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes
no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

n Quantstamp’ Moloch V3 Audit

