SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: DAOhaus
Date: September 01°%, 2022



==
mmll

HALCHEN

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Smart Contract Code Review and Security Analysis Report for
DAOhaus

Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU
ERC20 token; DAO

EVM

Ethereum, BSC

Solidity

Manual Review, Automated Review, Architecture Review
https://daohaus.club/

03.08.2022 - 01.09.2022

15.08.2022 - Initial Review
01.09.2022 - Second Review

www. hacken.io

N>



Table of contents

Introduction

Scope

Severity Definitions
Executive Summary
Checked Items

System Overview
Findings

Disclaimers

www. hacken.io

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

11
12

16

lwo


https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Introduction

Hacken 0U (Consultant) was contracted by DAOhaus (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope
The scope of the project is smart contracts in the repository:

Initial review scope
Repository:
https://github.com/HausDAO/Baal/tree/milestone/audit-715
Commit:
e704c3cc87684b1d5f2b7ad0e217e6a9dfe2f19c
Technical Documentation:
Whitepaper (partial functional requirements provided)

Technical description

Functional requirements

Integration and Unit Tests: Yes
Contracts:
File: ./contracts/Baal.sol
SHA3: 8dd88c20f18al1c04cc305e1deb1db772f29¢c906747185c855006a88565e548b2

File: ./contracts/SharesERC20.sol
SHA3: 8dc857c93d5a5d2d0ec700ca5b2c96c8ae53e40c50a631be71b29ba6053a0387

File: ./contracts/LootERC20.sol
SHA3: 054e2a93e64ae43d0d2f6fcc8864f26581ac67f639f2b2a981662e80d3¢c58596

File: ./contracts/tools/TributeMinion.sol
SHA3: 7e1d74829af4dc6bdf4f2a30549bf74554560121750651b3496a767e6f1979a9

File: ./contracts/tools/Poster.sol
SHA3: 0af8c54e5f3ea3lafa2ff3c8de5d448060a1cd2d89ddd2c3e3d7aea7a7db9b69

File: ./contracts/mock/TestAvatar.sol
SHA3: 433708291fa939afb6ef1501f66b940c83b46bed4c4f4e7423e9f5cdc35ffade

File: ./contracts/mock/TestERC20.sol
SHA3: abd3e3b21b423596f141f4d02159a13a4ffd2a5468380007eea5599fc033b097

File: ./contracts/mock/MockBaal.sol
SHA3: 59666ca0042468722ee8ed910598485917bf74dd3a942fcf5db6c123a56bf3b6

File: ./contracts/fixtures/GnosisImports.sol
SHA3: 43e50a9258d54c7d5¢c2f024b5a80310c58920ebb7dbe40de358df1c3e4f5a343

File: ./contracts/interfaces/IBaal.sol
SHA3: 9cbd7ed49c8267414ff18ab9da502cd8faad4ced6a45165b380626082093180f 3

Second review scope
Repository:

www. hacken.io

[EN


https://github.com/HausDAO/Baal/tree/milestone/audit-715
https://baal-docs.vercel.app/
https://github.com/user/repo/readme.md
https://github.com/user/repo/docs/really-long-link-should-be-%20manually-divided-by-spaces/in-order-to-look-pretty/

394607d691

Commit:

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

https://github.com/HausDAO/Baal/commit/15bf835955e20c75¢c47e2d3d89341b

15bf835955e20c75¢c47e€2d3d89341b394607d691
Technical Documentation:
Whitepaper artial functional requirements provided

Technical description

Functional requirements

Integration and Unit Tests: Yes

Contracts:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

File:
SHA3:

./contracts/Baal.sol
d245813820963bfacabefbc9006a9c169a03e70718b374f68e9ab1224a9cb579

./contracts/SharesgRC20.sol
8dc857c93d5a5d2d0ec700cabb2c96c8ae53e40c50a631be71b29ba6053a0387

./contracts/LootERC20.sol
054e2a93e64ae43d0d2f6fcc8864f26581ac67f639f2b2a981662e80d3¢c58596

./contracts/tools/TributeMinion. sol
7e1d74829af4dcb6bdf4f2a30549bf74554560121750651b3496a767e6f1979a9

./contracts/tools/Poster.sol
Qaf8ch4e5f3ea3lafa2ff3c8de5d448060alcd2d89ddd2c3e3d7aea7a7db9b69

./contracts/mock/TestAvatar.sol
433708291fa939afb6ef1501f66b940c83b46bed4c4f4e7423e9f5cdc35ffode

./contracts/mock/TestERC20.sol
abd3e3b21b423596f141f4d02159a13a4ffd2a5468380007eea5599fc033b097

./contracts/mock/MockBaal . sol
59666ca0042468722ee8ed910598485917bf74dd3a942fcf5db6c123a56bf3b6

./contracts/fixtures/GnosisImports.sol
43e50a9258d54c7d5c2f024b5a80310c58920ebb7dbe40de358df1c3e4f5a343

./contracts/interfaces/IBaal.sol
9cbd7ed49c8267414ff18ab9da502cd8faadced6a45165b380626082093180f3

www. hacken.io

lon


https://github.com/HausDAO/Baal/commit/15bf835955e20c75c47e2d3d89341b394607d691
https://github.com/HausDAO/Baal/commit/15bf835955e20c75c47e2d3d89341b394607d691
https://baal-docs.vercel.app/
https://github.com/user/repo/readme.md
https://github.com/user/repo/docs/really-long-link-should-be-%20manually-divided-by-spaces/in-order-to-look-pretty/

| LLLLL
mmll

HACHEN

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Severity Definitions

Critical

High

Low

Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low-level vulnerabilities are mostly related to

outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www. hacken.io

loy



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality

The total Documentation Quality score is 6 out of 10. The Customer provided
superficial functional and technical documentation.

Code quality
The total CodeQuality score is 10 out of 10.

Architecture quality

The architecture quality score is 10 out of 10.

Security score

As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary

According to the assessment, the Customer's smart contract has the
following score: 9.6.

The final score

Table. The distribution of issues during the audit

5 August 2022 7 2 1 0

01 September 0 0 0 0

www. hacken.io

I~


https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

| LLLLL
L

HRACEHEN

Checked Items

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Default
Visibility

Integer
Overflow and
Underflow

Outdated
Compiler
Version

Floating Pragma

Unchecked Call
Return Value

Access Control
& Authorization

SELFDESTRUCT
Instruction

Check-Effect-
Interaction

Assert
Violation

Deprecated
Solidity
Functions

Delegatecall to
Untrusted
Callee

DoS (Denial of
Service)

Race Conditions

Authorization
through
tx.origin

SWC-100
SWC-108

WC-102

SWC-103

SWC-104

CWE-284

SWC-106

SWC-107

SWC-110

SWe-111

SWC-112

SWC-113
SWC-128

SWC-114

SWC-115

Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

If unchecked math is used, all math
operations should be safe from overflows and
underflows.

It is recommended to use a recent version of
the Solidity compiler.

Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

The return value of a message call should be
checked.

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs to
other users.

The contract should not be self-destructible
while it has funds belonging to users.

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Properly functioning code should never reach
a failing assert statement.

Deprecated built-in functions should never

be used.

Delegatecalls should only be allowed to
trusted addresses.

Execution of the code should never be
blocked by a specific contract state unless
it is required.

Race Conditions and Transactions Order
Dependency should not be possible.

tx.origin should not be used for
authorization.

www. hacken.io

Passed

Passed

Passed

Passed

Passed

Passed

Not Relevant

Passed

Passed

Passed

Not Relevant

Passed

Passed

Passed

loo


https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

Block values as

a proxy for
time

Signature
Unique Id

Shadowing State

Variable

Weak Sources of

Randomness

Incorrect
Inheritance
Order

Calls Only to
Trusted
Addresses

Presence of
unused
variables

EIP standards
violation

Assets
integrity

User Balances
manipulation

Data
Consistency

Flashloan
Attack

Token Supply
manipulation

Gas Limit and
Loops

Style guide
violation

Requirements
Compliance

SWC-116

SWC-117
SWC-121

WC-122
EIP-155

SWC-119

SWC-120

SWC-125

EEA-Leve

1-2
SWC-126

SWC-131

™
—
T

Custom

Custom

Custom

Custom

Custom

Custom

Custom

Custom

Block numbers should not be used for time
calculations.

Signed messages should always have a unique
id. A transaction hash should not be used as
a unique id. Chain identifier should always
be used. All parameters from the signature
should be used in signer recovery

State variables should not be shadowed.

Random values should never be generated from
Chain Attributes or be predictable.

When inheriting multiple contracts,
especially if they have identical functions,
a developer should carefully specify
inheritance in the correct order.

All external calls should be performed only
to trusted addresses.

The code should not contain unused variables
if this is not justified by design.

EIP standards should not be violated.

Funds are protected and cannot be withdrawn
without proper permissions.

Contract owners or any other third party
should not be able to access funds belonging
to users.

Smart contract data should be consistent all
over the data flow.

When working with exchange rates, they
should be received from a trusted source and
not be vulnerable to short-term rate changes
that can be achieved by using flash loans.
Oracles should be used.

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the customer.

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not be
any cases when execution fails due to the
block Gas limit.

Style guides and best practices should be
followed.

The code should be compliant with the
requirements provided by the Customer.

www. hacken.io

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Passed

Not Relevant

Passed

Not Relevant

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

o


https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Environment
Consistency

Secure Oracles

Usage

Tests Coverage

Stable Imports

Custom

Custom

Custom

Custom

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

The code should be covered with unit tests.
Test coverage should be 100%, with both
negative and positive cases covered. Usage
of contracts by multiple users should be
tested.

The code should not reference draft
contracts, that may be changed in the
future.

www. hacken.io

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Passed

Not Relevant

Passed

Passed



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

System Overview

Baal is a minimal yet composable DAO template continuing work from the
Moloch, Minion and Compound frameworks to make it easier for people to
combine and command crypto assets with intuitive membership games. It has
the following contracts:
® Baal - is a minimal yet composable DAO template continuing work from
the Moloch, Minion and Compound frameworks to make it easier for
people to combine and command crypto assets with intuitive membership
games.
® Shares — have direct execution, voting and exit rights around actions
taken by the main DAO contract. Shareholders are the collective DAO
admins.
® [oot - has only exit rights against the DAO treasury, so loot does
not have the ability to admin the DAO config. However, because it has
exit rights, it is still a powerful unit, and because it is an ERC-20
can be used in many composable ways.
® TributeMinion - is a helper contract for making tribute proposals.
Provides contract to approve ERC-20 transfers. Provides a simple
function/interface to make a single proposal type.
® Poster - is a simple function that posts some data to events, these
events can then be indexed for access by frontends; sed for all types
of content and metadata capture.

Privileged roles

e Shamans - are specific addresses that have more granular control
outside the standard governance proposal flow. These addresses should
always be contracts that have been explicitly given these rights
through the standard proposal flow or during initial DAO setup.

e Governor - can cancel a proposal, set Governance Config (change the
length of proposals, if there is a required quorum, etc.).

Manager - can mint/burn shares/loot.

Admin - can set Admin configuration and pause/unpause shares/loot.
DAO - is always a super admin over its config. Can vote to make
changes to its configuration at any time.

Risks

e In case of Baal keys leak, an attacker can get access to Baal
(admin) functionalities, burn, mint, give shaman roles etc.

e The Baal contract uses the getPriorVotes function that accepts
timestamp instead of commonly used block number. The developers
should ensure that they use the correct implementation of the token.

www. hacken.io



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Findings

EEEE Critical

1.

No high severity issues were found.

High

. Library code should not be copied

Code from the popular OpenZeppelin library is copied into the
codebase.

This 1leads to an unnecessary increase in the audit scope and
introduces accidental change risks to otherwise safe and audited
code.

Paths: ./contracts/LootERC20.so0l : transferFrom, name, symbol
./contracts/ShareseRC20.sol : transferFrom, name, symbol

Recommendation: Remove the copy-pasted code. Remove overriding for
transferFrom function.

Status: Fixed (Revised commit:
15bf835955e20c75¢c47e2d3d89341b394607d691)

Medium
Denial of Service vulnerability

External calls can fail accidentally or deliberately, which can cause
a DoS condition in the contract. Inside the Baal’s totalSupply
function, there are two external calls ‘lootToken.tokenSupply’ and
‘sharesToken. tokenSupply’.

This can lead to DoS condition in the contract
Path: ./contracts/Baal.sol : totalSupply()

Recommendation: Isolate each external call into its own transaction
that can be initiated by the recipient of the call.

Status: Mitigated (with Customer notice)

. Assembly usage

CloneFactory implements ‘createClone’ functionality using assembly.
Assembly usage can lead to error in implementation.

Path: ./contracts/Baal.sol : CloneFactory:createClone(address)
Recommendation: Use clone functionality from OpenZeppelin library.

Status: Fixed (Revised commit:
15bf835955e20¢c75¢c47e2d3d89341b394607d691)

m Low

www. hacken.io



3.

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

. Floating pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

The project uses floating pragmas 0.8.0.

Paths: ./contracts/Baal.sol
./contracts/LootERC20.sol
./contracts/SharesERC20.sol
./contracts/interfaces/IBaal.sol
./contracts/mock/MockBaal. sol
./contracts/mock/TestAvatar.sol
./contracts/mock/TestERC20.sol
./contracts/tools/Poster.sol
./contracts/tools/TributeMinionr.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: (Revised commit:
15bf835955e20c75¢c47e2d3d89341b394607d691)

. State variable default visibility

Labeling the visibility explicitly makes it easier to catch incorrect
assumptions about who can access the variable.

Paths: ./contracts/Baal.sol : status, multisendLibrary,
gnosisSafeProxyFactory, moduleProxyFactory

./contracts/tools/TributeMinion.sol : escrow

Recommendation: Variables can be specified as being public, internal,
or private. Explicitly define visibility for all state variables.

Status: (Revised commit:
15bf835955e20c75¢c47e2d3d89341b394607d691)

Variable shadowing

Solidity allows for ambiguous naming of state variables when
inheritance is used.

Loot’s and Shares state variables ‘_name’ and ‘_symbol’ shadow ERC20
state variables.

Paths: ./contracts/LootERC20.sol : _name, _symbol

www. hacken.io



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

./contracts/SharesERC20.sol : _name, _symbol
Recommendation: Rename related variables/arguments.

Status: (Revised commit:
15bf835955e20c75¢c47e2d3d89341b394607d691)

. Commented code parts

Commented parts of code in a contract. They will not cause any
security issues, but make code less clear.

In the contracts : Shares (lines 116-120, 125, 137, 233)
TributeMinion (lines 5, 126, 133, 138), Baal (lines 381, 1164) are
commented parts of code.

This reduces code quality.

Paths: ./contracts/LootERC20.sol
./contracts/SharesERC20.sol
./contracts/Baal.sol

Recommendation: Remove commented parts of code.

Status: (Revised commit:
15bf835955e20c75¢c47e2d3d89341b394607d691)

. Unused variable

Unused variables should be removed from the contracts. Unused
variables are allowed in Solidity and do not pose a direct security
issue. It is best practice to avoid them as they can cause an
increase in computations (and unnecessary Gas consumption) and
decrease the readability.

The variable ‘nonces’ is never used inside the Baal contract.
Path: ./contracts/Baal.sol

State variable : nonces

Recommendation: Remove unused variables.

Status: (Revised commit:
15bf835955e20¢c75¢c47e2d3d89341b394607d691)

. Redundant import

The use of unnecessary imports will increase the Gas consumption of
the code. Thus they should be removed from the code.

The second wusage of Enum.sol 1is wunnecessary for the Baal.sol
contract.

Path: ./contracts/Baal.sol

Import: "@gnosis.pm/safe-contracts/contracts/common/Enum.sol"

www. hacken.io



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Recommendation: Remove the duplicate import.

Status: (Revised commit:
15bf835955e20¢c75¢c47e2d3d89341b394607d691)

. Missing zero address validation

Address parameters inside the BaalSammoner contract are being used
without checking against the possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/Baal.sol

Constructors: _lootSingleton, _sharesSingleton, _gnosisSingleton
Recommendation: Remove the duplicate import.

Status: (Revised commit:
15bf835955e20c75¢c47e2d3d89341b394607d691)

www. hacken.io



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www. hacken.io



